
PureScript-Milkis Documentation

Justin Woo

May 14, 2022

Contents

1 Pages 3
1.1 Introduction . 3

i

ii

PureScript-Milkis Documentation

This is a guide for the PureScript library Milkis, a library for easily making HTTP requests by using the Fetch API
and getting the results in Aff.

This library allows you to use fetch from the Browser by using the window implementation, and from Node by using
the node-fetch library.

Note: If there is a topic you would like more help with that is not in this guide, open a issue in the Github repo for it
to request it.

Contents 1

https://github.com/justinwoo/purescript-milkis
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://pursuit.purescript.org/packages/purescript-aff
https://github.com/bitinn/node-fetch

PureScript-Milkis Documentation

2 Contents

CHAPTER 1

Pages

1.1 Introduction

1.1.1 FetchImpl

To use this library, you’ll have to use a value of FetchImpl, which is a foreign data type. This library provides
two bindings via the modules Milkis.Impl.Window and Milkis.Impl.Node. You may choose to bring your
own, typing a foreign import as FetchImpl.

You can partially apply the function Milkis.fetch to get a value of Fetch. For example, with Node you could
do this:

import Milkis as M
import Milkis.Impl.Node (nodeFetch)

fetch :: M.Fetch
fetch = M.fetch nodeFetch

1.1.2 Fetch

Fetch is simply a type alias:

type Fetch
= forall options trash
. Union options trash Options
=> URL
-> Record (method :: Method | options)
-> Aff Response

What this signature says is given some type varaibles options and trashwhere there is a Union of options and
trash together to form Options, we have a function that takes URL and a record with a method :: Method
field and the fields specified in options to return an Aff Response. Let’s look at the definition of Options:

3

PureScript-Milkis Documentation

type Options =
(method :: Method
, body :: String
, headers :: Headers
, credentials :: Credentials
)

So what the Union constraint does here is declare that options must have some subset of this row type, and that
there exists some trash row type that is the complement. For more reading about Union, you might want to read a
post about it here: https://github.com/ justinwoo/my-blog-posts#unions-for-partial-properties-in-purescript

1.1.3 How using Fetch works

Let’s see an example of this at work:

main = do
_response <- Aff.attempt $ fetch (M.URL "https://www.google.com") M.

→˓defaultFetchOptions
case _response of
Left e -> do
fail $ "failed with " <> show e

Right response -> do
stuff <- M.text response
let code = M.statusCode response
code `shouldEqual` 200
String.null stuff `shouldEqual` false

Let’s also peek at the definition of defaultFetchOptions:

defaultFetchOptions :: { method :: Method }
defaultFetchOptions =

{ method: getMethod
}

So in this case, we chose to only supply method :: Method and it worked. Let’s see how this works with a
POST request:

main = do
let
opts =

{ method: M.postMethod
, body: "{}"
, headers: M.makeHeaders { "Content-Type": "application/json" }
}

result <- attempt $ fetch (M.URL "https://www.google.com") opts
isRight result `shouldEqual` true

This time, we provided a body for the post method along with some headers. If we look at the type of makeHeaders,
we can get a better idea of what is happening:

makeHeaders
:: forall r . Homogeneous r String
=> Record r
-> Headers

4 Chapter 1. Pages

https://github.com/justinwoo/my-blog-posts#unions-for-partial-properties-in-purescript

PureScript-Milkis Documentation

Here, makeHeaders allows us to create headers from a homogeneous record of String types using the
Homogeneous class from Typelevel Prelude.

By using these constraints, we are able to use Fetch in quite flexible ways that don’t require having a large set of
default options to be overridden. If you understand the content of this page, you’ll be able to tackle any problems you
run into with this library and understand how to use Union-based approaches in general.

For the browser usage, you should really only need to do fetch = M.fetch windowFetch and be on your way,
so please look through the tests for examples of how to use this library.

1.1. Introduction 5

https://pursuit.purescript.org/packages/purescript-typelevel-prelude
https://github.com/justinwoo/purescript-milkis/blob/master/test/Main.purs

	Pages
	Introduction

